Please. Answer Fast! Use composition to determine if G(x) or H(x) is the inverse of F(x) for the
domain x ≥ 2.
will mark brainliest

Please Answer Fast Use composition to determine if Gx or Hx is the inverse of Fx for thedomain x 2will mark brainliest class=

Respuesta :

Answer:

A. H(x) is an inverse of F(x)

Step-by-step explanation:

The given functions are:

[tex]F(x)=\sqrt{x-2}[/tex]

[tex]G(x)=(x-2)^2[/tex]

[tex]H(x)=x^2+2[/tex]

We compose F(x) and G(x) to get:

[tex](F\circ G)(x)=F(G(x))[/tex]

[tex](F\circ G)(x)=F((x-2)^2)[/tex]

[tex](F\circ G)(x)=\sqrt{(x-2)^2-2}[/tex]

[tex](F\circ G)(x)=\sqrt{x^2-4x+4-2}[/tex]

[tex](F\circ G)(x)=\sqrt{x^2-4x+2}[/tex]

[tex](F\circ G)(x)\ne x[/tex]

Hence G(x) is not an inverse of F(x).

We now compose H(x) and G(x).

[tex](F\circ H)(x)=F(H(x))[/tex]

[tex](F\circ H)(x)=F(x^2+2)[/tex]

[tex](F\circ H)(x)=\sqrt{x^2+2-2}[/tex]

We simplify to get:

[tex](F\circ H)(x)=\sqrt{x^2}[/tex]

[tex](F\circ H)(x)=x[/tex]

Since [tex](F\circ H)(x)=x[/tex], H(x) is an inverse of F(x)