Atmospheric air at 25 °C and 8 m/s flows over both surfaces of an isothermal (179C) flat plate that is 2.75m long. Determine the heat transfer rate per unit from the plate for 3 width different values of the critical Reynolds number: 100,000; 500,000; and 1,000,000

Respuesta :

Answer:

Re=100,000⇒Q=275.25 [tex]\frac{W}{m^2}[/tex]

Re=500,000⇒Q=1,757.77[tex]\frac{W}{m^2}[/tex]

Re=1,000,000⇒Q=3060.36 [tex]\frac{W}{m^2}[/tex]

Explanation:

Given:

For air      [tex]T_∞[/tex]=25°C  ,V=8 m/s

  For surface [tex]T_s[/tex]=179°C

     L=2.75 m    ,b=3 m

We know that for flat plate

[tex]Re<30\times10^5[/tex]⇒Laminar flow

[tex]Re>30\times10^5[/tex]⇒Turbulent flow

Take Re=100,000:

 So this is case of laminar flow

  [tex]Nu=0.664Re^{\frac{1}{2}}Pr^{\frac{1}{3}}[/tex]

From standard air property table at 25°C

  Pr= is 0.71  ,K=26.24[tex]\times 10^{-3}[/tex]

So    [tex]Nu=0.664\times 100,000^{\frac{1}{2}}\times 0.71^{\frac{1}{3}}[/tex]

Nu=187.32   ([tex]\dfrac{hL}{K_{air}}[/tex])

187.32=[tex]\dfrac{h\times2.75}{26.24\times 10^{-3}}[/tex]

     ⇒h=1.78[tex]\frac{W}{m^2-K}[/tex]

heat transfer rate =h[tex](T_∞-T_s)[/tex]

                           =275.25 [tex]\frac{W}{m^2}[/tex]

Take Re=500,000:

So this is case of turbulent flow

  [tex]Nu=0.037Re^{\frac{4}{5}}Pr^{\frac{1}{3}}[/tex]

[tex]Nu=0.037\times 500,000^{\frac{4}{5}}\times 0.71^{\frac{1}{3}}[/tex]

Nu=1196.18  ⇒h=11.14 [tex]\frac{W}{m^2-K}[/tex]

heat transfer rate =h[tex](T_∞-T_s)[/tex]

                             =11.14(179-25)

                           = 1,757.77[tex]\frac{W}{m^2}[/tex]

Take Re=1,000,000:

So this is case of turbulent flow

  [tex]Nu=0.037Re^{\frac{4}{5}}Pr^{\frac{1}{3}}[/tex]

[tex]Nu=0.037\times 1,000,000^{\frac{4}{5}}\times 0.71^{\frac{1}{3}}[/tex]

Nu=2082.6  ⇒h=19.87 [tex]\frac{W}{m^2-K}[/tex]

heat transfer rate =h[tex](T_∞-T_s)[/tex]

                             =19.87(179-25)

                           = 3060.36 [tex]\frac{W}{m^2}[/tex]