A man in a maze makes three consecutive displacements. His first displacement is 6.70 m westward, and the second is 11.0 m northward. At the end of his third displacement he is back to where he started. Use the graphical method to find the magnitude and direction of his third displacement.

Respuesta :

Answer:

The man had a displacement of 12.88 m southeastward

Step-by-step explanation:

The path of man forms a right triangle. The first two magnitudes given in the problem form the legs and the displacement that we must calculate forms the hypotenuse of the triangle. To do this we will use the equation of the pythagorean theorem.

H = magnitude of displacement

[tex]H^2 = \sqrt{L_1^2 + L_2^2} = \sqrt{6.70^2 + 11.0^2} = \sqrt{165.89}   =12.88 m[/tex]

using the graphic method, we will realize that the displacement is oriented towards the southeast