Find the perimeter of quadrilateral ABCD. Round your answer to the nearest hundredth.
A(-5, 4)
B(0,3)
C(4,-1)
D(4,-5)
E(2,-3)
F(-2,1)​

Respuesta :

Answer:

The perimeter of quadrilateral ABCD is 27.48 units

Step-by-step explanation:

we know that

The perimeter of quadrilateral ABCD is the sum of its four length sides

so

[tex]P=AB+BC+CD+AD[/tex]

we have

A(-5, 4),B(0,3),C(4,-1) and D(4,-5)

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Find the distance AB

Substitute in the formula

[tex]d=\sqrt{(3-4)^{2}+(0+5)^{2}}[/tex]

[tex]d=\sqrt{(-1)^{2}+(5)^{2}}[/tex]

[tex]AB=\sqrt{26}\ units[/tex]

Find the distance BC

Substitute in the formula

[tex]d=\sqrt{(-1-3)^{2}+(4-0)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(4)^{2}}[/tex]

[tex]BC=\sqrt{32}\ units[/tex]

Find the distance CD

Substitute in the formula

[tex]d=\sqrt{(-5+1)^{2}+(4-4)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(0)^{2}}[/tex]

[tex]CD=4\ units[/tex]

Find the distance AD

Substitute in the formula

[tex]d=\sqrt{(-5-4)^{2}+(4+5)^{2}}[/tex]

[tex]d=\sqrt{(-9)^{2}+(9)^{2}}[/tex]

[tex]AD=\sqrt{162}\ units[/tex]

Find the perimeter

substitute the values

[tex]P=\sqrt{26}+\sqrt{32}+4+\sqrt{162}=27.48\ units[/tex]

see the attached figure to better understand the problem

Ver imagen calculista