Evaluate 8a+3b-10+c^28a+3b−10+c 2 8, a, plus, 3, b, minus, 10, plus, c, squared when a=2a=2a, equals, 2, b=5b=5b, equals, 5, and c=4c=4c, equals, 4.

Respuesta :

Answer:

Final answer is 37 after evaluating.

Step-by-step explanation:

The given equation is,[tex]8 a+3 b-10+c^{2}[/tex]

Here a= 2, b=5, c = 4

We need to evaluate the equation.

Substituting the values in the equation we get,

[tex]8 a+3 b-10+c^{2}[/tex]

[tex]=(8 \times 2)+(3 \times 5)-10+4^{2}[/tex]

Using Multiplication property we get;

[tex]= 16 +15 -10 +16[/tex]

Using addition property  and subtraction property we get,

[tex]=32 +5[/tex]

On simplifying equation using addition property we get,

[tex]=37[/tex]

Hence Final answer is 37 after evaluating.

Answer:

its 37

Step-by-step explanation: