What this simplified

Answer:
[tex]\frac{3b\sqrt[3]{c^{2}} }{a^{2} }[/tex]
Step-by-step explanation:
∛(27a⁻⁶b³c²)
To simplify, first apply the cube root the each of the terms. Keep in mind this rule: [tex]\sqrt[n]{a^{m}} = (\sqrt[n]{a})^{m} = a^{m/n}[/tex]
∛27 = 3 (because 3*3*3 = 27)
∛a⁻⁶ = [tex]a^{-6/3}[/tex] = [tex]a^{-2}[/tex] = [tex]\frac{1}{a^{2}}[/tex]
∛b³ = [tex]b^{3/3}[/tex] = [tex]b^{1}[/tex] = b
∛c² = [tex]c^{2/3}[/tex]
∛(27a⁻⁶b³c²)
= [tex]\frac{3b\sqrt[3]{c^{2}} }{a^{2} }[/tex]
Simplified form generally follows these rules:
No negative exponents
No fraction exponents
Keep in fractional form
Reduce numerical values