Answer:
z-interval: (-1.64, 1.64)
90% Confidence interval: (7954,8446)
Step-by-step explanation:
We are given the following in the question:
Sample mean, [tex]\bar{x}[/tex] = $8,200
Sample size, n = 225
Alpha, α = 0.10
Sample standard deviation, s = $750
90% Confidence interval:
[tex]\mu \pm z_{critical}\dfrac{\sigma}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]z_{critical}\text{ at}~\alpha_{0.10} = \pm 1.64[/tex]
z-interval: (-1.64, 1.64)
[tex]8200 \pm 1.64(\dfrac{750}{\sqrt{25}} ) = 8200 \pm 246 = (7954,8446)[/tex]
(7954,8446) is the required confidence interval.