(08.03)Solve the system of equations and choose the correct answer from the list of options. x + y = −3 y = 2x + 2 five over 3 comma 4 over 3 negative 5 over 3 comma negative 4 over 3 negative 3 over 5 comma negative 3 over 4 3 over 4 comma 3 over 5

Respuesta :

x + y = -3 . . . (1)
y = 2x + 2 . . . (2)

substituting (2) into (1) gives, x + 2x + 2 = -3
3x = -5
x = -5/3

From (2), 2(-5/3) + 2 = -10/3 + 2 = -4/3

Required solution (-5/3, -4/3)

Answer:

Option 2nd is correct

[tex](-\frac{5}{3}, -\frac{4}{3})[/tex]

Step-by-step explanation:

Given the system of equation:

[tex]x+y = -3[/tex]           .....[1]

y = 2x+2                 .....[2]

Substitute equation [2] into [1] we have;

x + 2x+ 2 = -3

Combine like terms;

3x +2 = -3

Subtract 2 from both sides we have;

3x = -5

Divide both sides by 3 we have;

[tex]x = -\frac{5}{3}[/tex]

Substitute the value of x in [2] we have;

[tex]y = 2 \cdot \frac{-5}{3} +2 = -\frac{10}{3} + 2 = -\frac{4}{3}[/tex]

Therefore, the solution for the given system is, [tex](-\frac{5}{3}, -\frac{4}{3})[/tex]