kaia128
contestada

Which function describes the graph below?
f(x) = 6 cos(x)
f(x) = 3 cos(x) + 3
f(x) = 6 sin(x)
f(x) = 3sin(x) + 3

Which function describes the graph below fx 6 cosx fx 3 cosx 3 fx 6 sinx fx 3sinx 3 class=

Respuesta :

Answer:

f(x) = 3 cos(x) + 3

Step-by-step explanation:

The graph can be described by the function f(x) = 3 cos(x) + 3.

What is a function?

'A function is a relation from a set of inputs to a set of possible outputs where each input is related to exactly one output.'

According to the given problem,

Period = 3

Amplitude = 3

We can see,

When x = 0

         f(x) = 6

When x = [tex]\frac{\pi }{2}[/tex]

        f(x) = 3

When x = [tex]\pi \\[/tex]

        f(x) = 0

In accordance to the equation, f(x) = 3cos(x) + 3

                                              ⇒  f(x) = 3cos(0) + 3

                                              ⇒ f(x) = ( 3×1 ) + 3

                                              ⇒ f(x) = 3 + 3

                                              ⇒ f(x) = 6

Hence, we can conclude that the function f(x) = 3 cos(x) + 3 represents the given function.

Learn more about functions here: https://brainly.com/question/12431044

#SPJ2