Respuesta :

Assuming the cube is closed, you can use the divergence theorem:

[tex]\displaystyle\iint_S\vec F\cdot\mathrm dS=\iiint_T\mathrm{div}\vec F\,\mathrm dV[/tex]

where [tex]S[/tex] is the surface of the cube and [tex]T[/tex] is the region bounded by [tex]S[/tex].

We have

[tex]\mathrm{div}\vec F=\dfrac{\partial(y+z)}{\partial x}+\dfrac{\partial(x+z)}{\partial y}+\dfrac{\partial(x+y)}{\partial z}=0[/tex]

so the flux is 0.