Answer:
Step-by-step explanation:
Slope of perpendicular lines = -1
y = 5/2x + 3
[tex]m_{1}=\frac{5}{2}\\\\m_{1}*m_{2}=-1\\\\[/tex]
[tex]m_{2}=[/tex] -1 ÷ [tex]m_{1}[/tex]
= [tex]-1*\frac{2}{5}=\frac{-2}{5}[/tex]
(-3 , -5)
Equation of the required line: y - y₁ = m(x -x₁)
y - [5] = [tex]\frac{-2}{5}(x - [-3])\\[/tex]
[tex]y+5=\frac{-2}{5}x + 3*\frac{-2}{5}\\\\y+5=\frac{-2}{5}x-\frac{6}{5}\\\\ y =\frac{-2}{5}x-\frac{6}{5}-5\\\\ y = \frac{-2}{5}x-\frac{6}{5}-\frac{5*5}{1*5}\\\\ y = \frac{-2}{5}x-\frac{6}{5}-\frac{25}{5}\\\\\\ y=\frac{-2}{5}x-\frac{31}{5}[/tex]