Respuesta :

Answer:

Step-by-step explanation:

Slope of perpendicular lines = -1

y = 5/2x + 3

[tex]m_{1}=\frac{5}{2}\\\\m_{1}*m_{2}=-1\\\\[/tex]

        [tex]m_{2}=[/tex] -1 ÷ [tex]m_{1}[/tex]

               = [tex]-1*\frac{2}{5}=\frac{-2}{5}[/tex]

(-3 , -5)

Equation of the required line: y - y₁ = m(x -x₁)

                                                y - [5] = [tex]\frac{-2}{5}(x - [-3])\\[/tex]

                                               [tex]y+5=\frac{-2}{5}x + 3*\frac{-2}{5}\\\\y+5=\frac{-2}{5}x-\frac{6}{5}\\\\ y =\frac{-2}{5}x-\frac{6}{5}-5\\\\ y = \frac{-2}{5}x-\frac{6}{5}-\frac{5*5}{1*5}\\\\ y = \frac{-2}{5}x-\frac{6}{5}-\frac{25}{5}\\\\\\ y=\frac{-2}{5}x-\frac{31}{5}[/tex]