Answer:
0.25 m.
Explanation:
mass of the block = 7.40 kg, height = 0.83 m, force constant of the spring = 9.50 x [tex]10^{2}[/tex] N/m.
The maximum compression on the spring can be determined by;
Potential energy stored in the spring = [tex]\frac{1}{2}[/tex] K[tex]x^{2}[/tex]
But, potential energy = mgh
So that,
mgh = [tex]\frac{1}{2}[/tex] K[tex]x^{2}[/tex]
7.4 x 9.8 x 0.83 = 9.50 x [tex]10^{2}[/tex] x [tex]x^{2}[/tex]
60.1916 = 9.50 x [tex]10^{2}[/tex] x [tex]x^{2}[/tex]
[tex]x^{2}[/tex]= [tex]\frac{60.1916}{9.50*10^{2} }[/tex]
= 0.06336
x = 0.2517
x = 0.25 m
The maximum compression of the spring is 0.25 m.