Respuesta :

Answer:

The order of operations are a set of rules for how to evaluate expressions. They make sure everyone gets to the same answer.

\purpleD{\text{P}}Pstart color #7854ab, start text, P, end text, end color #7854abarentheses: We evaluate what's inside parentheses first, before anything else. For example, 2\times \purpleD{(3+1)}=2\times4=82×(3+1)=2×4=82, times, start color #7854ab, left parenthesis, 3, plus, 1, right parenthesis, end color #7854ab, equals, 2, times, 4, equals, 8.

\blueD{\text{E}}Estart color #11accd, start text, E, end text, end color #11accdxponents: We evaluate exponents before multiplying, dividing, adding, or subtracting. For example, 2\times\blueD{3^2} = 2\times9=182×3

2

=2×9=182, times, start color #11accd, 3, squared, end color #11accd, equals, 2, times, 9, equals, 18.

\greenD{\text{M}}Mstart color #1fab54, start text, M, end text, end color #1fab54ultiplication and \greenD{\text{D}}Dstart color #1fab54, start text, D, end text, end color #1fab54ivision: We multiply and divide before we add or subtract. For example, 1+\greenD{4\div 2}=1+2 = 31+4÷2=1+2=31, plus, start color #1fab54, 4, divided by, 2, end color #1fab54, equals, 1, plus, 2, equals, 3.

\goldD{\text{A}}Astart color #e07d10, start text, A, end text, end color #e07d10ddition and \goldD{\text{S}}Sstart color #e07d10, start text, S, end text, end color #e07d10ubtraction: Lastly, we add and subtract.

Step-by-step explanation: