Respuesta :

msm555

Answer:

The value of x is [tex]\frac{7\sqrt{6}}{2}[/tex]

Solution given:

AB=7

BD=x

<BAC=60°

<DBC=45°

In right angled triangle ABC

Tan 60°=opposite/adjacent

Tan 60°=BC/AB

Substitute value

[tex]\sqrt{3}[/tex]=[tex]\frac{BC}{7}[/tex]

BC=[tex]7\sqrt{3}[/tex]

again

In right angled triangle BCD

Using Cos angle

Cos 45=adjacent/hypotenuse

Cos45°=BD/BC

Substituting value

[tex]\frac{\sqrt{2}}{2}=\frac{x}{7\sqrt{3}}[/tex]

Doing criss cross multiplication

[tex]\frac{\sqrt{2}}{2}*7\sqrt{3}=x[/tex]

x=[tex]\frac{7\sqrt{6}}{2}[/tex]

Ver imagen msm555