Answer:
a) 0.3571 = 35.71% probability that the stock price will be more than $25.
b) 0.1429 = 14.29% probability that the stock price will be less than or equal to $18.
Step-by-step explanation:
Uniform probability distribution:
An uniform distribution has two bounds, a and b.
The probability of finding a value of at lower than x is:
[tex]P(X < x) = \frac{x - a}{b - a}[/tex]
The probability of finding a value between c and d is:
[tex]P(c \leq X \leq d) = \frac{d - c}{b - a}[/tex]
The probability of finding a value above x is:
[tex]P(X > x) = \frac{b - x}{b - a}[/tex]
Uniformly distributed between $16 and $30 per share.
This means that [tex]a = 16, b = 30[/tex]
a) More than $25?
[tex]P(X > x) = \frac{30 - 25}{30 - 16} = 0.3571[/tex]
0.3571 = 35.71% probability that the stock price will be more than $25.
b) Less than or equal to $18?
[tex]P(X < 18) = \frac{18 - 16}{30 - 16} = 0.1429[/tex]
0.1429 = 14.29% probability that the stock price will be less than or equal to $18.