Answer:
Step-by-step explanation:
The easy way is to compare the leading terms or constants.
The leading term is:
The constant is:
The leading term is:
The constant is:
We see both the leading terms (10x³ ≠ 15x³) and constants (-18 ≠ -12) are different so the equation is false.
We see one of the factors is same on both sides:
The other factors are:
Since this factor is different on both sides, the equation is false
False
How?
Let 5x^2-2x+6 be A
The expression will be
[tex]\\ \sf\longmapsto A(2x-3)=A(3x-2)[/tex]
[tex]\\ \sf\longmapsto 2x-3=3x-2[/tex]
But it's impossible
[tex]\\ \sf\longmapsto 2x-3\neq 3x-2[/tex]