Respuesta :

Answer:

[tex] \frac{4}{(g + 4) ^{2} }[/tex]

Step-by-step explanation:

  • Factor the expressions that are not already factored in g/ + 4g.

[tex] \frac{g}{g(g + 4)} - \frac{g}{(g + 4) ^{2} } [/tex]

  • Cancel out g in both numerator and denominator.

[tex] \frac{1}{g + 4} - \frac{g}{(g + 4) ^{2} } [/tex]

  • To add or subtract expressions, expand them to make their denominators the same. Least common multiple of g+4 and (g+4)² is (g+4)². Multiply 1/g + 4 times g + 4/g + 4.

[tex] \frac{g + 4}{(g + 4) ^{2} } - \frac{g}{(g + 4) ^{2} } [/tex]

  • Since g + 4/(g + 4)² and g/( g + 4) have the same denominator, subtract them by subtracting their numerators.

[tex] \frac{g + 4 - g}{(g + 4) ^{2} } [/tex]

  • Combine like terms in g+4−g.

[tex] \frac{4}{(g + 4) ^{2} } [/tex]

  • Expand (g + 4)².

[tex] \frac{4}{g^{2} + 8g + 16 } [/tex]

Hope It's Help