Respuesta :

Answer:

[tex]2^{x+3}=24[/tex]

Step-by-step explanation:

[tex]\textsf{Apply exponent rule} \quad a^{b+c}=a^b \cdot a^c[/tex]

[tex]\begin{aligned}\implies 2^{x+3} & =2^x \cdot 2^3\\& = 2^x \cdot 8\end{aligned}[/tex]

[tex]\textsf{Given }2^x=3:[/tex]

[tex]\begin{aligned}\implies 2^{x+3} & = 2^x \cdot 8\\ & = 3 \cdot 8\\& = 24\end{aligned}[/tex]

Answer:

   24

Explanation:

Given 2^x = 3

Apply exponent rules

[tex]\rightarrow \sf ln(2^x) = ln(3)[/tex]

[tex]\rightarrow \sf x ln(2) = ln(3)[/tex]

[tex]\sf \rightarrow x = \dfrac{ln(3)}{ln(2)}[/tex]

Then find the value of 2^{x + 3}

Insert x = ln(3)/ln(2)

[tex]\rightarrow \sf 2^{\dfrac{\ln \left(3\right)}{\ln \left(2\right)} + 3}[/tex]

[tex]\rightarrow \sf 24[/tex]