How many $4$-digit positive integers exist that satisfy the following conditions: (A) Each of the first two digits must be $1$, $4$, or $5$, and (B) the last two digits cannot be the same digit, and (C) each of the last two digits must be $5$, $7$, or $8$

Respuesta :

Answer:

54 possibles

Step-by-step explanation:

Digit ONE    3 choices

Digit two      3 choices

digit three    3 choices

digit  four      2 choices    

        3  x  3   x  3  x  2   = 54 choices meet all of the conditions