Respuesta :
Answer:
So, the vertex form of your function is [tex]y(x)=2*(x+2)^2-7[/tex].
The vertex is at [tex](-2|-7)[/tex]
Step-by-step explanation:
Given function:
[tex]y(x)=2*x^2+8x+1[/tex]
Steps:
[tex]y(x)=2*x^2+8x+1\\[/tex]
[tex]y(x)=2(x^2+4x+\frac{1}{2} )[/tex] (Factor out)
[tex]y(x)=2(x^2+4x+2^2-2^2+\frac{1}{2} )[/tex] (Complete the square)
[tex]y(x)=2((x+2)^2-2^2+\frac{1}{2} )[/tex] (Use the binomial formula)
[tex]y(x)=2((x+2)^2-\frac{7}{2} )[/tex] (Simplify)
[tex]y(x)=2*(x+2)^2-7[/tex] (Expand)
y = a ( x − h ) 2 + k is vertex form.
-b/2a to get x of vertex (x , y)
-8/4 = -2
So far we have (-2, y)
plug -2 into equation:
y = 2(-2)^2 - 16 + 1
y = -7
(-2, -7)
so 2(x+2)^2 - 7
-b/2a to get x of vertex (x , y)
-8/4 = -2
So far we have (-2, y)
plug -2 into equation:
y = 2(-2)^2 - 16 + 1
y = -7
(-2, -7)
so 2(x+2)^2 - 7